Statistical machine translation
نویسندگان
چکیده
منابع مشابه
Statistical Machine Translation
Statistical Machine Translation (SMT) deals with automatically mapping sentences in one human language (for example French) into another human language (such as English). The first language is called the source and the second language is called the target. This process can be thought of as a stochastic process. There are many SMT variants, depending upon how translation is modelled. Some approa...
متن کاملOn Statistical Machine Translation and Translation Theory
The translation process in statistical machine translation (SMT) is shaped by technical constraints and engineering considerations. SMT explicitly models translation as search for a target-language equivalent of the input text. This perspective on translation had wide currency in mid-20th century translation studies, but has since been superseded by approaches arguing for a more complex relatio...
متن کاملImproving Pronoun Translation for Statistical Machine Translation
Machine Translation is a well–established field, yet the majority of current systems translate sentences in isolation, losing valuable contextual information from previously translated sentences in the discourse. One important type of contextual information concerns who or what a coreferring pronoun corefers to (i.e., its antecedent). Languages differ significantly in how they achieve coreferen...
متن کاملNeural Machine Translation Advised by Statistical Machine Translation
Neural Machine Translation (NMT) is a new approach to machine translation that has made great progress in recent years. However, recent studies show that NMT generally produces fluent but inadequate translations (Tu et al. 2016; He et al. 2016). This is in contrast to conventional Statistical Machine Translation (SMT), which usually yields adequate but non-fluent translations. It is natural, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Computing Surveys
سال: 2008
ISSN: 0360-0300,1557-7341
DOI: 10.1145/1380584.1380586